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Abstract

Motivated by practical numerical issues in a number of modeling and simu-
lation problems, we introduce the notion of a compatible dual complex to a
primal triangulation, such that a simplicial mesh and its compatible dual com-
plex (made out of convex cells) form what we call a primal-dual triangulation.
Using algebraic and computational geometry results, we show that compati-
ble dual complexes exist only for a particular type of triangulation known as
weakly regular. We also demonstrate that the entire space of primal-dual tri-
angulations, which extends the well known (weighted) Delaunay/Voronoi du-
ality, has a convenient, geometric parametrization. We finally discuss how this
parametrization may play an important role in discrete optimization problems
such as optimal mesh generation, as it allows us to easily explore the space of
primal-dual structures along with some important subspaces.

1 Introduction

Mesh generation traditionally aims at tiling a bounded spatial domain with
simplices (triangles in 2D, tetrahedra in 3D) so that any two of these simplices
are either disjoint or sharing a lower dimensional face. The resulting triangu-
lation provides a discretization of space through both its primal (simplicial)
elements and its dual (cell) elements. Both types of element are crucial to a
variety of numerical techniques, finite element (FE) and finite volume (FV)
methods being arguably the most widely used in computational science. To
ensure numerical accuracy and efficiency, specific requirements on the size and
shape of the primal (typically for FE) or the dual elements (typically for FV)
in the mesh are often sought after.

Primal/Dual Pairs. A growing trend in numerical simulation is the simulta-
neous use of primal and dual meshes: Petrov-Galerkin finite-element/finite-
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volume methods (FE/FVM, [BP83, McC89, PMH07]) and exterior calculus
based methods [Bos98, DKT07, GP10] use the ability to store quantities on
both primal and dual elements to enforce (co)homological relationships in,
e.g., Hodge theory. The choice of the dual, defined by the location of the dual
vertices, is however not specified a priori. A very common dual to a triangula-
tion in Rd is the cell complex which uses the circumcenters of each d-simplex
as dual vertices. If the initial triangulation is Delaunay (i.e., satisfying the
empty circumsphere property [Ede87]), this dual is simply the Voronoi dia-
gram of the primal vertices, and its nice properties of non-self-intersection,
convexity, and orthogonality of the primal and dual elements have led to its
use in countless papers in computational sciences. The barycentric dual, for
which barycenters are used instead of circumcenters, is used for certain finite-
volume computations, but it fails to satisfy both the orthogonality and (more
importantly) convexity properties on general triangulations.

Towards Generalized Primal/Dual Meshes. While the Delaunay-Voronoi du-
ality [PS85, Ede87] is one of the cornerstones of meshing methods and, as
such, has been extensively used in diverse fields, more general dualities are
often desired. In biology for example, Voronoi cells (along with their dual
triangulations) were initially identified as closely approximating a variety of
monolayer cells and epithelial cells in tissue [OBSC00]; but computational bi-
ologists are now seeking generalizations of Voronoi diagrams to parameterize
a larger set of convex polyhedral tilings [Mjo06] to model the development of
early animal tissues and shoot meristems. The Weighted-Delaunay/Laguerre
duality was also advocated recently in [MMdGD11] to help provide lower er-
ror bounds on computations. Building on Schlegel diagrams and a number
of results in algebraic and computational geometry, we present an even more
general primal-dual pairs of complexes that we denote as primal-dual trian-
gulations.

Contributions. While Delaunay/Voronoi or Weighted-Delaunay/Laguerre du-
ality assumes orthogonality between primal and dual complexes, we relax this
requirement in our work: we investigate a general notion of dual complex to
a triangulation which we call a compatible dual complex, where the dual com-
plex is only assumed to be a union of convex straight-edge polytopes, with an
adjacency graph matching the triangulation’s adjacency graph—but where k-
simplices of the triangulation are not necessarily orthogonal to their associated
(n−k)-cells of the dual complex. While we will show that any two-dimensional
triangulation admits a compatible dual complex, this property is no longer
true in dimension three and above. We introduce a proper characterization of
primal-dual triangulations, which results in a simple parametrization of the
whole space of primal-dual triangulations. Finally, we discuss potential appli-
cations of our contributions, for instance in mesh optimization and clustering,
as our parametrization allows us to easily explore a space of primal-dual struc-
tures much larger than the space of orthogonal primal-dual structures.
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2 Preliminaries

Before delving into our contributions, we start by reviewing important notions
related to triangulations in different fields (such as combinatorial, computa-
tional, and algebraic geometry) that we build upon and extend in subsequent
sections.

2.1 Complex, Subdivision, and Triangulation

A cell complex in Rd is a set K of convex polyhedra (called cells) satisfying
two conditions:

1. Every face of a cell in K is also a cell in K, and
2. If C and C ′ are cells in K, their intersection is either empty or a common

face of both.

A simplicial complex is a cell complex whose cells are all simplices. The
body |K| of a complex K is the union of all its cells. When a subset P of Rd

is the body of a complex K, then K is said to be a subdivision of P ; if, in
addition, K is a simplicial complex, then K is said to be a triangulation of
P . For a set X of points in Rd, a triangulation of X is a simplicial complex
K for which each vertex of K is in X.

Note that in the definition of a triangulation of X, we do not require all
the points of X to be used as vertices; a point xi ∈ X is called hidden if it is
not used in the triangulation. A triangulation of X with no hidden points is
called a full triangulation of X.

2.2 Triangulations in Rd through Lifting in Rd+1

Let X = {x1, . . . ,xn} be a set of points in Rd. A simple way of construct-
ing a triangulation of X is through the following lifting procedure: take an
arbitrary function L : X −→ R called the lifting function; consider the
points (xi, L(xi)) ∈ Rd+1, i.e., the points of X lifted onto the graph of
L; in the space Rd+1, consider Conv(L) the convex hull of vertical rays
{(xi, l)| l ≥ L(xi), l ∈ R, xi ∈ X}; the bounded faces of Conv(L), i.e. faces
which do not contain vertical half lines, form the lower envelope of the
lifting L. If the function L is generic (see [GKZ94] Chap. 7), the orthogonal
projection (onto the first d coordinates) of the lower envelope of L produces
a triangulation of X.

It is clear that the above lifting procedure may produce triangulations for
which not all points of X are vertices. A triangulation of a set X of points
obtained through lifting is full (i.e., has no hidden points) if and only if all
the points (xi, L(xi)) lie on the lower envelope of L (or, in other words, if
function L can be extended, through linear interpolation in the triangles, to
a convex piecewise-linear function).
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2.3 Regular Triangulations and Subdivisions

Let X be a finite set of points in Rd. A triangulation obtained by orthogo-
nally projecting the lower envelope of a lifting of X in Rd+1 onto the first d
coordinates is called a regular triangulation ([Zie95], Definition 5.3).

More generally, a subdivision T of a polytope P ⊂ Rd is regular if it arises
from a polytope Q ⊂ Rd+1 in the following way:

• The polytope P is the image π(Q) = P of the polytopeQ via the projection
that deletes the last coordinate.

• The complex T is the projection under π of all the lower faces of Q. We call
F a lower face of Q if for every x ∈ F and a real number λ > 0, x−λed+1 /∈
Q. Informally, they are the faces that you can see from P if you “look up”
at Q.

Regular triangulations have appeared in different mathematical contexts
and are known under different names, such as weighted Delaunay triangu-
lations (see next section) or coherent triangulations [GKZ94]. While every
point set admits regular triangulations (see [DLRS], Proposition 2.2.4.), not
every triangulation is regular; Figure 4 (left) illustrates a classical non-regular
triangulation.

2.4 Schlegel diagrams

Schlegel diagrams are a related mathematical notion based on a construction
very similar to the lifting procedure defined above. They have been proven
an important tool for studying combinatorial and topological properties of
polytopes, as well as for visualizing four-dimensional polytopes [Ban90].

A Schlegel diagram is the (perspective) projection of a polytope from Rd+1

to Rd through a point p outside of the polytope, above the center of a facet
f . All vertices and edges of the polytope are projected onto the hyperplane of
that facet in the following way: For any vertex of the polytope, the line from
p through the vertex meets the hyperplane of f at the image of the vertex. If
two vertices are connected by an edge in the polytope, then the image of the
edge is the segment joining the images of the two vertices.

If the polytope is convex, there exists a point near the facet f which
maps all other facets inside f , so no edges need to cross in the projection.
In other words, the Schlegel diagram of a convex polytope is the projection
of the polytope’s skeleton on one of its faces (the nodes corresponding to the
vertices which do not belong to that face must lie inside the face). In this
case the resulting entity is a polytopal subdivision of the facet in Rd that is
combinatorially equivalent to the original polytope, see Figure 1.

Intuitively, by sending the base point of a Schlegel diagram at infinity we
obtain a regular subdivision (see [Zie95] Prop. 5.9, or [Tho06]). We will use this
equivalence between regular subdivisions and Schlegel diagrams (illustrated
in Figure 2) later in this paper.
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Fig. 1: The Schlegel diagrams of the five polyhedra (tetrahedron, cube, octahedron,
dodecahedron and icosahedron).

Fig. 2: By sending the base point of a Schlegel diagram at infinity we obtain a
regular subdivision (after [Sch03]).

Proposition 1 ([Zie95]). If T is a Schlegel diagram, T is a regular subdivi-
sion of |T |.

2.5 Weighted Delaunay Triangulations

A special choice for the lifting function produces the well-known and widely-
used Delaunay triangulation (see [Raj94, Mus97] for their properties, and [PS85]
for numerous applications). Indeed, let X be a set of points in Rd. Consider
the lifting of the points in X onto the surface of the paraboloid h(x) = ‖x‖2
in Rd+1; i.e., each xi = (a1, . . . , ad) ∈ X gets mapped to (xi, hi) ∈ Rd+1

with hi = ‖xi‖2 = a21 + · · ·+ a2d. Then the orthogonal projection of the lower
envelope of this lifting produces a (full) triangulation coinciding with the De-
launay triangulation of X.

A regular triangulation can now be seen as a generalization of the De-
launay triangulation as follows. We first define a weighted point set as a
set (X,W ) = (x1, w1), . . . , (xn, wn), where X is a set of points in Rd, and
{wi}i∈[1,...,n] are real numbers called weights. The weighted Delaunay tri-
angulation of (X,W ) is then the triangulation of X obtained by projecting
the lower envelope of the points (xi, ‖xi‖2−wi) ∈ Rd+1. Note that a weighted
Delaunay triangulation can now have hidden points.

Notice also that given a lifting function L and its values li = L(xi) at the
points of X, one can always define weights to be the difference between the
paraboloid and the function L, wi = ‖xi‖2− li. We conclude that the notions
of regular triangulations and weighted Delaunay triangulations are equivalent.
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2.6 Generalized Voronoi Diagrams (Power Diagrams)

Delaunay triangulations (resp., weighted Delaunay triangulations) can also
be obtained (or defined) from their dual Voronoi diagrams (resp., power dia-
grams). Let (X,W ) = {(xi, wi)}i∈I be a weighted point set in Rd. The power
of a point x ∈ Rd with respect to a weighted point (xi, wi) (sometimes re-
ferred to as the Laguerre distance) is defined as d2(x,xi) − wi, where d(., .)
stands for the Euclidean distance. Using this power definition, to each xi we
associate its weighted Voronoi region V (xi, wi) = {x ∈ Rd| d2(x,xi) − wi ≤
d2(x,xj) − wj ,∀j}. The power diagram of (X,W ) is the cell complex whose
cells are the weighted Voronoi regions.

Note that when the weights are all equal, the power diagram coincides
with the Euclidean Voronoi diagram of X. Power diagrams are well known to
be dual to weighted Delaunay triangulations, as we review next.

2.7 Power Diagram vs. Weighted Delaunay Triangulation

The dual of the power diagram of (X,W ) is the weighted Delaunay tri-
angulation of (X,W ). This triangulation contains a k-simplex with ver-
tices xa0 ,xa1 , . . . ,xak

in X if and only if V (xa0
, wa0

) ∩ V (xa1
, wa1

) ∩ · · · ∩
V (xak

, wak
) 6= ∅, ∀k ≥ 0. While many other generalization of Voronoi dia-

grams exist, they do not form straight-edge and convex polytopes, and are
thus not relevant here.

Geometric Property. We finally review an interesting geometric property
of Voronoi and power diagrams, as it will become useful later on. Con-
sider the affine functions σi(x) = −2xi · x + ‖xi‖2 for i = 1, . . . , n: their
graphs are obviously hyperplanes of Rd+1 that are tangent to the paraboloid
h(x) = ‖x‖2 at point xi. Let us call
these hyperplanes Hi, and let H+

i de-
note the half-space lying above Hi. The
minimization diagram of the σi is ob-
tained by projecting the lower envelop
of H+

1 ∩ · · · ∩H+
n orthogonally onto Rd.

However, for any x, argmini‖x− xi‖2 =
argmini(−2xi ·x+‖xi‖2). Thus, one con-
cludes that the Euclidean Voronoi dia-
gram of X is the orthogonal projection of the skeleton of the lower envelop
of H+

1 ∩ · · · ∩H+
n —see inset and [ES86]. More generally, the power diagram

of (X,W ) is the orthogonal projection of the skeleton of the lower envelop of
the intersection of half-spaces lying above hyperplanes (−2xi ·x+‖xi‖2−wi):
such a hyperplane is indeed the tangent plane to the paraboloid h(x) = ‖x‖2
at point xi translated down by wi. This geometric fact can be interpreted as a
hyperplane assignment to each (weighted) Voronoi region, and it will be used
in the forthcoming proof of our Theorem 1.
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3 Compatible Dual Complexes of Triangulations

We now show that the notion of mesh duality can be extended so that the dual
complex is defined geometrically, and independently from the triangulation—
while the combinatorical compatibility between the triangulation and its dual
is maintained.

Definition 1 (Simple Cell Complex). A cell complex K in Rd is called
simple if every vertex of K is incident to d + 1 edges. K is called labeled if
every d-dimensional cell of K is assigned a unique label; in this case, we write
K = {C1, . . . , Cn}, where n is the number of d-dimensional cells of K, and
Ci is the i-th d-dimensional cell.

Definition 2 (Compatible Dual Complex). Let T be a triangulation of a
set X = {x1, . . . ,xn} of points in Rd, and K = {Ci1 , . . . , Cin} be a labeled
simple cell complex, i.e. there is a one-to-one correspondence between xp and
Cip . K is called a compatible dual complex of T if, for every pair of points
xp and xq that are connected in T , Cip and Ciq share a face.

This compatibility between K and T is purely combinatorial, i.e., it simply
states that the connectivity between points induced by K coincides with the
one induced by T . Notice that the cell Cip associated to the point xp, does
not necessarily contain xp in its interior. Moreover, the edge [xp,xq] and
its dual Cip ∩ Ciq are not necessarily orthogonal to each other, unlike most
conventional geometric dual structures. Consequently, we can generalize the
notion of mesh duality through the following definition:

Definition 3 (Primal-Dual Triangulation (PDT)). A pair (T,K) is said
to form a d-dimensional primal-dual triangulation if T is a triangulation
in Rd and K is a compatible dual complex of T . If every edge [xp,xq] and its
dual Cip ∩ Ciq are orthogonal to each other, the pair (T,K) is said to form
an orthogonal primal-dual triangulation.

3.1 Characterization of Primal-Dual Triangulations

An immediate question is whether any triangulation can be part of a PDT.
We first characterize the triangulations that admit a compatible dual complex
through the following two definitions:

Definition 4 (Combinatorial Equivalence). Two triangulations T and T ′

are combinatorially equivalent if there exists a labeling which associates to each
point xi in T a point x′

i in T ′ so that the connectivity between xi’s induced by
T matches the connectivity between the x′

i’s induced by T ′.

Definition 5 (Combinatorially Regular Triangulations (CRT)). A tri-
angulation T of a d-dimensional point set X is called a combinatorially
regular triangulation if there exists a d-dimensional point set X ′ admitting
a regular triangulation T ′ such that T and T ′ are combinatorially equivalent.
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(a) A triangulation T (solid line) and a

compatible (non-orthogonal) dual com-

plex K (dashed line).

(b) K is the power diagram dual to

a regular triangulation T ′ (thin dashed

line).

(c) The triangulation T is combinatori-

ally equivalent to the regular triangula-

tion T ′.

(d) PDT (T,K) is parameterized

through xi (points), vi (displacements),

and wi (weights).

Fig. 3: Primal-Dual Triangulation, with its primal triangulation, dual complex,
and combinatorially equivalent regular triangulation separately displayed for clarity.

Remark: these CRT triangulations have been introduced in [Lee91] under the
name of weakly regular triangulations, since a displacement of their vertices
suffices to make them regular. Figure 4 (after [Lee91]) shows an example of a
combinatorially regular triangulation which is not, itself, regular.

Existence of PDTs in 2D. The 2D case is rather simple, due to this result:

Proposition 2 ([Lee91]). Any 2-dimensional triangulation is combinatori-
ally regular.
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(a) A regular triangulation (top),
once deformed (bottom), becomes
a combinatorially regular triangu-
lation which is not, itself, regular.

Ck

Cm

Cj

Ci

pj

pi

pm

pk?

(b) A cell complex (solid line) that does
not admit a primal orthogonal triangula-
tion (after [Aur87a]).

Fig. 4: Classical Examples, showing the existence of non-regular triangulations
(a) and of dual complexes without associated primal triangulations (b).

Proof. This is a straightforward corollary of a classical theorem of Steinitz
[Ste22] which implies that for every complex in the plane whose edge graph is
three-connected, there exists a convex 3-polyhedron with isomorphic bound-
ary. Since any 2-dimensional triangulation T is trivially edge three-connected,
there exists a convex 3-polyhedron P with isomorphic boundary. Therefore,
the orthogonal projection of the boundary of P onto the plane is a regular
triangulation which is isomorphic to T . ut

Therefore, every 2D triangulation T can be part of a PDT pair (T,K).

Existence of PDTs in Higher Dimensions. In higher dimensions (three and
above), however, the situation is rather different: the set of regular triangula-
tions does not contain all possible triangulations between points as stated in
the next proposition.

Proposition 3 ([Grü03]). For d ≥ 3, there exist d-D triangulations which
are not combinatorially regular.

This is equivalent to the fact that there are simplicial diagrams that are not
combinatorially equivalent to any Schlegel diagram. Chronologically, the first
example was found by Grünbaum in 1965 (see [Grü03] pages 219-224): he
presented a simplicial 3-diagram with 7 vertices which is not combinatorially
equivalent to any Schlegel diagram of 4-polytopes. Before this result, there
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had been several attempts to prove that any simplicial diagram is combina-
torially equivalent to a Schlegel diagram (also called polytopal or polytopi-
cal)3, see also [CH80]. The simplest non-combinatorially regular examples are
the Brucker sphere and the Barnette sphere (short proofs are available in
[Ewa96]Sec III.4).

3.2 PDT=CRT

We now show that combinatorially regular triangulations are the only ones
that admit compatible dual complexes. The proof revolves around a theorem
due to Aurenhammer:

Every simple cell complex in Rd, d ≥ 3, is a Schlegel diagram.4

This theorem was proved in [Aur87a] through an iterative construction which
is valid in any dimension d ≥ 3. We use this theorem to prove the follow-
ing theorem which surprisingly implies that in higher dimensions there are
triangulations that do not admit a dual complex:

Theorem 1 (PDT Characterization). A d-dimensional triangulation T
admits a compatible (not necessarily orthogonal) dual complex if and only if
T is combinatorially regular.

Proof. Let T be a triangulation combinatorially equivalent to a regular trian-
gulation T ′. The conventional dual of T ′, a power diagram, is thus a compat-
ible dual of T as well.

Now suppose that T is a triangulation with a compatible dual complex
K. According to Aurenhammer’s theorem, K is a Schlegel diagram, i.e., to
each cell Cj of K we can assign a hyperplane Hj in Rd+1 so that the lower
envelop of these hyperplanes projects orthogonally onto K (see also [Sha93]).
On the other hand, the tangent planes of the (d+ 1)-dimensional paraboloid
span the whole space of non vertical hyperplane directions in Rd+1. Therefore
for each j, there exists a point pj ∈ Rd whose tangent plane to the paraboloid
in Rd+1 is parallel to Hj . In that case, one can easily conclude that K is the
power diagram of (pj, wj), 1 ≤ j ≤ n, where the weight wj depends on the
distance between the two parallel hyperplanes mentioned before. Now consider
the weighted Delaunay triangulation T ′ of weighted points (pj, wj), 1 ≤ j ≤
n. Since K is a compatible dual complex for both T and T ′, we conclude
that T and T ′ are combinatorially equivalent. Since T ′ is regular, T is a
combinatorially regular triangulation. ut

3These terms are commonly used to study the combinatorics of polytopes and
diagrams, often independently from their embedding. Therefore, the reader should
be aware of some ambiguities in the definition of these notions in the literature,
between being a Schlegel diagram or being combinatorially equivalent to it.

4Note that Aurenhammer employs the equivalent name of polytopical diagram.
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Existence of PDT for Given Dual Complexes. We can also discuss whether a
dual complex can be part of a PDT pair to further characterize the space of
primal-dual pairs we will be parameterizing. In dimension d ≥ 3, Aurenham-
mer’s theorem directly implies that every simple cell complex is dual to a regu-
lar triangulation. But this same theorem is not true in 2D, and Figure 4 (right)
shows a counter example presented by Aurenhammer [Aur87a]—proving that
not every 2D simple cell complex is the dual of a regular triangulation; thus
PDTs do not capture all 2D convex cell complexes.

4 Parameterizing Primal-Dual Triangulations

We have established that primal-dual triangulations cover all dual complexes
in d ≥ 3 but only those which come from a regular triangulation for d = 2;
they also cover all 2D triangulations, but only triangulations which admit a
dual in d ≥ 3. We now focus on parameterizing the whole space of primal-dual
triangulations with n points in Rd by simply adding parameters at the points.
We then explore a geometric interpretation of this intrinsic parametrization
as well as its properties.

The proof of Theorem 1 leads us very naturally to a parametrization of
all the triangulations that admit a compatible dual complex:

Definition 6. A parameterized primal-dual triangulation is a primal-
dual triangulation parameterized by a set of triplets (xi, wi,vi), where xi is
the position in Rd of the ith node, wi is a real number called the weight of
xi, and vi is a d-dimensional vector called the displacement vector of xi.
The triangulation associated with the triplets (xi, wi,vi) is defined such that
its dual complex K is the power diagram of weighted points (pi, wi), where
pi = xi + vi.

The dual complex K can be seen as the generalized Voronoi diagram of the
xi’s for the distance d(x,xi)=‖x−xi−vi‖2−wi. When the vectors vi are all
null, the parameterized primal-dual triangulation T is regular, thus perpen-
dicular to its dual K, and the pair (T,K) forms an orthogonal primal-dual
triangulation. This proves that weighted Delaunay triangulations are suffi-
cient to parameterize the set of all orthogonal primal-dual triangulations (see
also [Gli05]). The displacement vectors extend the type of triangulations and
duals we can parameterize.

Geometric Interpretation. This parametrization can be seen as a very natural
extension of the geometric interpretation mentioned in Section 2.6. Indeed,
PDTs in Rd are simply defined by assigning one hyperplane Hi in Rd+1 per
point xi: the orthogonal projection of the lower envelop of these hyperplanes
{Hi}i=1,...,n will form the dual complex of the PDT, inducing the primal
triangulation. Weights and displacements vectors serve as a means to encode
the choice of hyperplanes.
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We now provide some geometric properties of the primal-dual triangulation
parameterized by a set of triplets (xi, wi,vi).

Lemma 1 (Characterization of PDT triplets). Let (T,K) be a PDT
parameterized by (xi, wi,vi). The set of triplets {(x′

i, w
′
i,v

′
i)} parameterizes

the same primal-dual triangulation (T,K) if and only if x′
i = xi and there

exist a constant α ∈ R, a positive constant β ∈ R+, and a vector v such that
w′

i = wi − 2v · (xi + vi) + α and v′
i = β(xi + vi)− xi + v.

Proof. Let us denote by R and R′ the weighted Delaunay triangulations of
weighted points (xi + vi, wi) and (xi + v′

i, w
′
i) respectively. K is then the

power diagram of both weighted point sets (xi + vi, wi) and (xi + v′
i, w

′
i),

and is dual to both R and R′. However, two regular triangulations have the
same power diagram only if they are homothetic (see, for instance, [Aur87b]
for a proof). Hence, there exist a positive constant β > 0, and a vector v
such that xi + v′

i = β(xi + vi) + v. On the other hand, it is easy to show
that the power diagram of the set of weighted points (pi, wi), translated by
a vector −v, coincides with the power diagram of (pi, wi − 2v · pi + α).
Also, such a translated power diagram can be changed back to the original
diagram by simply adding v to each displacement vector vi. This implies that
(xi , wi−2v · (xi +vi)+α , (β−1)xi +βvi +v) and (xi, wi,vi) parameterize
the same PDT. ut

This lemma characterizes the classes of equivalent triplets parameterizing the
same PDT. Using this characterization, we now provide a set of constraints for
the parameters of the triplets which allow us to avoid redundancy between
equivalent triplets and define an efficient parametrization for the space of
primal-dual triangulations:

Theorem 2 (PDT Parametrization). There is a bijection between all
primal-dual triangulations in Rd and sets of triplets (xi, wi,vi), 1 ≤ i ≤ n,
where xi,vi ∈ Rd, wi ∈ R with

∑
i wi = 0,

∑
i vi = 0, and

∑
i ‖xi + vi‖2 =∑

i ‖xi‖2.

Proof. The proof is provided in two parts: i) For any triplet (xi, wi,vi), there
exists an equivalent triplet (x′

i, w
′
i,v

′
i) which fulfills the conditions of the the-

orem. Indeed, the choice of:

β =

√
n
∑

i ‖xi‖2 − ‖
∑

i xi‖2
n
∑

i ‖xi + vi‖2 − ‖
∑

i(xi + vi)‖2
,

v =
1− β
n

∑
i

xi −
β

n

∑
i

vi, α =
2

n
v ·

∑
i

(xi + vi)−
∑

i wi

n

in the characterization of Lemma 1 gives the desired triplet. ii) Suppose that
both (xi, wi, vi) and (xi, wi − 2v · xi − 2v.vi + α, (β − 1)xi + βvi + v) fulfill
the conditions, for some constants α and β > 0, and a constant vector v. A
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direct computation implies α = 0, v = 0 and β = 1. Therefore for each class
of equivalent triplets, there is a single triplet which verifies the conditions of
the parametrization. ut

Remark: using this parametrization, the particular case of Delaunay / Voronoi
PDT of a set of points {xi}i=1..n is naturally parameterized by triplets
(xi, 0, 0). Similarly, the weighted Delaunay / Power PDT is parameterized
by triplets (xi, wi, 0). Note also that the condition

∑
i wi = 0 may be re-

placed by mini wi = 0, by simply subtracting the minimum weight from all
the weights of triplets. This new condition implies that all the weights are
positive, which may be useful in some applications.

5 Conclusions

In this paper, we introduced the notion of compatible dual complex for a given
triangulation in Rd, and discussed the conditions under which an arbitrary tri-
angulation admits a compatible, possibly non-orthogonal dual complex (and
vice-versa). Note that our only assumption on the dual is that it is made out
of convex polytopes, thus reducing the space of possible primal-dual pairs to
a computationally-convenient subset for which basis functions and positive
barycentric coordinates are easily defined. We also pointed out a link to a
previously-introduced notion of weakly regular triangulation by Lee in the
nineties, and that there are triangulations that do not admit a dual com-
plex. We derived a natural parametrization of all non-orthogonal primal-dual
structures in Rd by means of plane assignments in Rd+1.

Besides the theoretical interest of these new primal-dual structures, we an-
ticipate numerous applications. We believe that our results can benefit mesh
optimization algorithms as we provide a particularly convenient way to explore
a large space of primal-dual structures. We recently provided a first step in
this direction by designing pairs of primal-dual structures that optimize accu-
racy bounds on differential operators using our parametrization [MMdGD11],
thus extending variational approaches designed to improve either primal (Op-
timal Delaunay Triangulations [ACSYD]) or dual (Centroidal Voronoi Tessel-
lations [LWL+09]) structures. To some extent, our approach can even help to
deal with situations where the primal triangulation is given and cannot safely
be altered: for instance, moving vertices and/or changing the connectivity of
a triangle mesh in R3 is potentially harmful, as it affects the surface shape.
Still, the ability to optimize weights to drive the selection of the dual mesh
is very useful. We can easily optimize primal-dual triangulations (meshes) by
minimizing a functional (energy) with respect to weights. The connectivity
is kept intact, regardless of the weights—only the position and shape of the
compatible dual is optimized. Our 2D and 3D experiments [MMdGD11] show
that only optimizing the weights is particularly simple and beneficial on a
number of meshes. Fig. 5 depicts a triangle mesh of a hand and its intrinsic
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dual before and after weight optimization, showing a drastic reduction in the
number of negative dual edges—thus providing a practical alternative to the
use of intrinsic Delaunay meshes advocated in [FSBS06].

Fig. 5: Improving Dual Structure of a Surface Mesh: For a given triangulation
(center) there are several triangles whose circumcenter is far outside the triangle
(left, lines in red). By optimizing only the weights the new dual vertices are better
placed inside the unchanged triangles (right) while keeping primal/dual orthogonality.

As another illustrative example, Fig. 6 shows that even an optimized De-
launay triangulation (ODT mesh) with exceptionally high-quality tetrahe-
dra [TWAD09] can be made significantly better centered (i.e., with dual ver-
tices closer to the inside of their associated primal simplex) using a simple
weight optimization. Note also that in this example the number of tetra-
hedra with a dual vertex outside of the primal tet dropped from 17041 on
the ODT mesh to 5489 on the optimized mesh—a two third reduction of
outcentered tetrahedra. While all these results only explored the orthogonal
primal-dual triangulations, we expect that better results would be obtained
with our parametrization if we relax the orthogonality constraint in favor of
arbitrary convex dual cells. The use of vertex weights to ensure boundary and
feature protection as proposed in [CDL08] would be interesting as well in this
context. In addition to applications in mesh optimization, as we mentioned
in the introduction, modeling (as in computational biology) that uses con-
vex space tilings could directly use our parametrization of PDTs. Clustering
techniques based on k-means may also benefit from parameterizing clusters
by more than just centers, as weights and vectors add more flexibility to the
segmentation of input data.

Future Work. Enforcing proper embedding of a PDT can be crucial in
some applications. While sufficient conditions on the weights {wi} and dis-
placements {vi} are easy to derive (one can, for instance, limit each vi to
stay within the ball centered on xi and of radius

√
wi), it could be beneficial
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Fig. 6: Improving Dual Structures of 3D Meshes: The dual of a high-
quality ODT mesh of the Bimba con Nastrino (left, cross-section; 195K tets,
36K vertices) can be optimized by improving minimal dual edge length and
self-centeredness [MMdGD11] (middle; weights are displayed according to sign
(red/green) and magnitude (radius)). When we single out the tetrahedra with a dis-
tance between weighted circumcenter and barycenter greater than 0.5% of the bound-
ing box, one can see the optimized mesh (right) is significantly better than the original
ODT (right, inset), even if the primal triangulations are exactly matching.

to have less constraining conditions. Other necessary and sufficient conditions
to enforce, for instance, that primal vertices are placed within their associ-
ated dual cells (or vice-versa) could be also useful. Finally, we wish to study
possible links between primal-dual triangulations and an algebraic-geometric
construction due to Gelfand, Kapranov, and Zelevinsky [GKZ94], where each
(embedded) triangulation of a set of n points x1, . . . ,xn in Rd is associated
with a point in Rn. The i-th coordinate of this new point is the total vol-
ume of all simplices incident to xi in the triangulation, and the convex hull
of these new points is called the secondary polytope of the point set. This
hull has dimension n−d−1, and interestingly, its vertices correspond exactly
to the regular triangulations of the point set. This construction helps trans-
late geometric questions into combinatorial questions about polyhedral fans.
Using a similar construction for combinatorially regular triangulations could
extend some existing results for regular triangulations—in particular, algorith-
mic and enumerative questions. For instance, the decision of whether a given
triangulation is regular is easily reduced to linear programming; however, de-
termining whether a given triangulation is combinatorially regular seems to
be very hard in general: a result by Richter-Gebert ([RG96] corollary 10.4.1)
states that already in dimension 4 there are infinitely many minor-minimal
non-combinatorially regular diagrams. In other words, combinatorial types of
d-diagrams with n vertices may not be characterized by excluding a finite set
of forbidden minors. We plan to investigate a weaker variant of this problem
restricted to a subspace of combinatorially regular triangulations by focusing
on rational embedding of diagrams that are easier to study for enumeration
purposes. This natural restriction of the space of diagrams links our prob-
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lem to the topic of tropical geometry, whose objects are rational polyhedral
complexes in Rd.
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